RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College under University of Calcutta)

B.A./B.SC. SIXTH SEMESTER EXAMINATION, MAY-JUNE 2013 THIRD YEAR

e : 28/05/2013 Mathematics (Honours)

Time: 11am – 3pm Paper: VIII Full Marks: 70

(Use separate answer books for each Group)

Group - A

Answer **any five** questions from the following:

Show that three coplanar forces P₁, P₂, P₃ acting at points A₁, A₂, A₃ respectively are in a static equilibrium if they meet in a point O situated on the circumcircle of A₁, A₂, A₃, and if P₁: P₂: P₃ = A₂A₃: A₃A₁: A₁A₂.

[6]

[6]

[3]

2. A rough wire in the form of an ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, is placed with its x-axis vertical and y-axis horizontal. If μ be the coefficient of friction, find the depth below the highest point of the position of limiting equilibrium of a bead which rests on the wire.

3. A rod AB is movable about a joint at A, and to B is attached a string whose other end is tied to a ring. The ring slides along a smooth horizontal wire passing through A. Prove by the principle of virtual work, that the horizontal force necessary to keep the ring at rest is $\frac{W \cos \alpha \cos \beta}{2 \sin(\alpha + \beta)}$, where

W is the weight of the rod and α, β the inclinations of the rod the string to the horizontal.

- 4. Discuss the stability of equilibrium of a system of rigid bodies when gravity is the only external force. [6]
- 5. A stiff wire in the form of a parabola rests on the horizontal ground with its plane vertical. The centre of gravity of the wire is on the axis of the parabola at a distance h from the vertex and the latus rectum is 4a. Prove that, if h>2a, there is a position of equilibrium in which the axis

makes an angle $\tan^{-1} \sqrt{\frac{a}{h-2a}}$ with the horizontal and that this position of equilibrium is stable. [6]

- 6. When a curve is said to be a catenary of uniform strength?
 - The distance between the points of support in the same horizontal line of a catenary of uniform strength is 'a' and the length of the chain is ' ℓ '. Show that the parameter 'c' can be determined

from the equation $\tanh \frac{\ell}{4c} = \tan \frac{a}{4c}$. [1+5]

- 7. Show that any system of forces acting on a rigid body can be reduced to a single force and a couple whose axis lies on the line of action of the force. [6]
- 8. A force P acts along the axis of x and another force 2P acts along a generator of the cylinder $x^2 + y^2 = a^2$. Show that the central axis lies on the cylinder $4(2x-z)^2 + 25y^2 = 16a^2$. [6]

Group - B

Answer **any two** questions from the following:

- 9. a) Assuming 5 –bit binary number with left most bit being the sign bit, perform the following subtraction using 2's complement: 00101 00100.
 - b) Find the number N such that $(11011)_2 \times (11101)_2 = (N)_8$. [3]
 - c) Write an algorithm to find the H.C.F. of two distinct positive integers by Euclid's algorithm,

indicating also the case when the numbers are coprime. [4]

[3]

[4]

[3]

[2]

- 10. a) In a Boolean Algebra B, prove that $a + (b + c) = (a + b) + c \quad \forall a, b, c \in B$. [3]
 - b) f is a function of three Boolean variables x, y, z defined by f(x, y, z) = xy + z'. Express f(x, y, z) in disjunctive normal form.
 - c) A committee of three persons A, B, C decides proposals by a majority of votes. A has a voting weight 3, B has a voting weight 2 and C has a voting weight 1. Design a simple circuit so that light will glow when a majority of votes is cast in favour of the proposal.
- 11. a) Write an efficient computer program in C language to sort the following set of real numbers in ascending order: 10.2, 14.6, 3.9, 8.6, 5.8, 13.5, 2.4, 7.5, 4.5 and 11.2. [5]
 - b) Write a C program using switch statement to determine roots of a quadratic equation $ax^2 + bx + c = 0$ (a \neq 0), where a, b, c are given. [5]

Group - C

[Answer either <u>Unit-I or Unit-II]</u>

<u>Unit - I</u>

Answer **any four** questions :

- 12. a) Prove that the components of a tensor of type (0, 2) can be expressed as the sum of a symmetric tensor and a skew symmetric tensor of same type.
 - b) If a tensor A_{ijkl} is symmetric in the first two indices from the left and skew symmetric in the second and fourth indices from the left, show that $A_{ijkl} = 0$.
- 13. Prove that there is no distinction between covariant and contravariant vectors under transformation of the form $\bar{x}^i = a_m^i x^m + b^i$, where a_m^i and b^i are constants such that $a_r^i a_m^i = s_m^r$ (i summed). [5]
- 14. If the metric is given by $(ds)^2 = 5(dx^1)^2 + 3(dx^2)^2 + 4(dx^3)^2 6dx^1dx^2 + 4dx^2dx^3$, evaluate (i) g, and (ii) g^{ij} . [5]
- 15. Define a unit vector in Riemannian space V_n . Show that in V_4 with line element ds defined

by
$$ds^2 = -(dx^1)^2 - (dx^2)^2 - (dx^3)^2 + c^2 (dx^4)^2$$
, the vector $(\sqrt{2}, 0, 0, \frac{\sqrt{3}}{c})$ is a unit vector. [1+4]

- 16. a) Prove that $\frac{\partial g^{ik}}{\partial x^{j}} = -g^{hk} \begin{Bmatrix} i \\ h j \end{Bmatrix} g^{hi} \begin{Bmatrix} k \\ h j \end{Bmatrix}$. [4]
 - b) Prove that $\delta \frac{i}{j,k} = 0$. [1]
- 17. Define Christoffel symbol of the second kind. Show that $\begin{cases} i \\ i \end{cases} = \frac{\partial \log \sqrt{g}}{\partial x^j}$, where $g = |g_{ij}| \neq 0$. [1+4]

<u>Unit – II</u>

Answer **any four** questions :

- 12. Define regular value of a differentiable map $f:U\to\mathbb{R}$, where $U\subseteq\mathbb{R}^3$ is an open set. State the implicit function theorem and use it to show that if $a\in\mathbb{R}$ is a regular value of the above map f & if the set $S=f^{-1}\left(\left\{a\right\}\right)$ is non empty, them S is a surface. [1+4]
- 13. Define unit normal vector field on a surface S. Show that if S is a connected surface & N_1 , N_2 be two unit normal vector fields on S, there either $N_1 = N_2$ or $N_1 = -N_2$. [1+4]
- 14. Show that the sphere is an orientable surface. Compute the Gauss and Mean curvature of sphere. [2+3]

- 15. Define curvature $K_{\alpha}(s)$ of a curve $\alpha: I \to \mathbb{R}^2$ (parametrized by arc length) at a point $s \in I$. Let $\alpha: \mathbb{R} \to \mathbb{R}^2$ be a curve defined by $\alpha(s) = c + r \left(\cos \frac{s}{r}, \sin \frac{s}{r} \right)$ for some $c \in \mathbb{R}^2$ & r>0. Compute $K_{\alpha}(s) \ \forall \ s \in \mathbb{R}$.
- 16. Let $I \subseteq \mathbb{R}$ be an open interval and $K_0, \widehat{C}_0: I \to \mathbb{R}$ be two differentiable functions with $K_0(s) > 0 \, \forall \, s \in I$ Then \exists a curve $\alpha: I \to \mathbb{R}^3$ parametrized by arc length such that $K_\alpha(s) = K_0(s)$ & $\tau_\alpha(s) = \tau_0(s) \, \forall s \in I$ where K_α & τ_α are the curvature and torsion function of α . Furthermore α is unique upto a direct rigid motion of Euclidean space \mathbb{R}^3 .
- 17. Let S be a surface, $f:S\to\mathbb{R}$ be a differentiable function and $P\in S$ be a regular point of f. Show that \exists an open neighbourbood V of P in S, a real no. $\varepsilon>0$ and an injijective regular curve $\alpha:(-\varepsilon,\varepsilon)\to\mathbb{R}^3$ which is homeomorphic onto its image such that $\alpha(0)=P$ and $f^{-1}(\{a\})\cap V=\alpha(-\varepsilon,\varepsilon)$, where f(P)=a.

so 黎 ca